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One-parameter  families of area-preserving twist maps  of the form F~(x, y)= 
(x + y + ef(x), y + ~f(x)) are considered. Various invariant curves, for the maps  
corresponding to f (x)  = sin x and f (x)  = sin x + (1/50) sin(5x), are rigorously 
constructed for large values of the nonlinearity parameter e. For larger values 
of e, close to critical, some numerical experiments are briefly discussed. 
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1. I N T R O D U C T I O N  

Consider one-parameter families of area-preserving twist maps of the form 

y ' =  y + ef(x) 
F~: (1) 

x'  = x + y (rood 2~) 

where y ~ R, x e T = R/2nZ, e is a real parameter, and f(x) is a periodic 
real-analytic function with zero average. 

For  e = 0 ,  F0 is integrable: all trajectories lie on circles, 
{y = const} = cg0(y ) c R x T, and the dynamics is simply a rotation by y. 
When e r 0 but small it can be shown by KAM theory ~ (see ref. 11 
for an elementary exposition, and ref. 4 for a review) that for most (in 
measure-theoretic sense) numbers co there still exists a unique analytic 
invariant curve cg~(co) (homotopically nontrivial) on which the dynamics is 
described, up to an analytic change of variables, by a rotation by co as in 
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the integrable case. Here, we shall call curves c~(co) (e r  satisfying the 
just mentioned properties, KAM curves. 

A byproduct of KAM theory is that the set of parameter values s for 
which cg~(co) exists and is analytic is open. Therefore, for each of the above 
co, we can define a value e,(co) corresponding to the "last KAM curve": the 
open interval (0, Sa) is the maximal interval of the form (0, a) such that for 
every 0 < e < a there exists a KAM curve ~g~(co). 

On the other hand, it can be shown (24) that if s is large enough, F~ 
admits no continuous invariant, homotopically nontrivial, circles at all. 
Another critical parameter value can therefore be defined: 

~b(co) -= sup{e0/> 0 s.t. F, admits a continuous invariant circle 
with rotation number co, for all e e [0, sol } 

where "circle" is short for "homotopically nontrivial embedding of T into 
R x T" and by "rotation number" we mean the Poincar6 rotation number 
of the circle map obtained by restricting F~ to the invariant circle (for 
general information see, e.g., ref. 14). 

Natural questions such as the relation between ea and eb, the 
dependence of the curve on (the number-theoretic properties of) co, and the 
mechanism beyond the disappearance of the invariant curves as e is 
increased are still mathematically unexplained. Partial answers can, 
however, be extracted from refs. 6, 10, 14, 15, 22, and 23. The results of 
refs. 22 and 6 exploit computer-assisted techniques, i.e., techniques involving 
long (but straightforward) calculations, which are performed with the aid 
of computers; the so-called interval arithmetic is used to control rigorously 
the numerical errors introduced by the machine (see refs. 19 and 9 and 
Appendix C below). 

The results of ref. 6 together with the upper bounds on e b of ref. 22 
suggest that, at least in the case of the so-called standard map (SM) [i.e., 
(1) with f (x)  = sin(x)] 

sup sb(co) = ea(co,) (2) 
co 

for a particular rotation number co,, which, in the case of the (SM), seems 

to be 2~ times the golden mean (x / -5 -  1)/2. 
Here, we consider the (SM) and the map (1) with f ( x ) =  

s in(x)+ (1/50) sin(5x) [dubbed (SM) ' ]  and, extending and refining the 
techniques of ref. 6, we construct KAM curves for the following rotation 
numbers coke (0, 2~): 

c o l _ ~ - -  1 _ , co2 -- x//'5 + 5 -- , co3 -- x/-2 -- (3) 
2re 2 21t 10 2re 2 
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for "large" values of the nonlinearity parameter ~, "large" meaning 
e=  O(~b) (see below for the exact numbers and for the experimental 
calculation of ~b). These curves and some of their properties are also 
investigated numerically. 

To be more precise, denote by cg~(a)k) the invariant curve with rotation 
number (Sk for the standard map and by cg'~(cok) the invariant curve for the 
map (SM)'. In Section 2, implementing the KAM technique presented in 
ref. 6, we construct cg~(cok) and (g'~(a~k) for e e C  with [el ~<Pk, [el ~p~,  
respectively, proving the existence of (g~(c01) for [el <~0.838, of qf~(co2) for 
[e[ ~<0.77, of C~(co3) for [el ~<0.76, of cg'~(col) for [~[ ~<0.4, and of (g'~(a)2) for 
It[ ~0.39. All these results are new; the only curve which has been 
investigated along these lines is egg(col). In ref. 6 the existence of (g~(cs~) was 
proved for [el ~<0.65. The main reason for the present improvement lies in 
a change related to the "choice" of the initial approximation used as starting 
point for the KAM algorithm. More precisely, while in ref. 6 we used inter- 
val arithmetic also in the first stage of constructing the initial guess for 
the Newton method, here we choose a numerically constructed initial 
approximation and apply interval arithmetic only at later stages when the 
accuracy of the initial guess is rigorously controlled. This change of 
strategy has the advantage of avoiding the use of interval arithmetic 
directly on small divisors, reducing in a cospicuous way the sensitivity of 
the computations (see Section 2.3). 

In Section 3, following Greene, (~3) we give a numerical evaluation of 
Sa (which we shall compare with a numerical extrapolation of our KAM 
algorithm). 

The agreement between our rigorous lower bounds and the numerical 
evaluation of sb is within 86%-54%. Analogous results for the golden 
mean invariant curve for the standard map have been announced in ref. 8, 
where it is claimed that such a curve exists for e =0.91. The strategy in 
ref. 8, which seems to be not completely unrelated to ours, allows one to 
handle higher nonlinearities; however, their method does not give any 
global information in parameter space. For example, they do not establish 
the existence of the golden mean curve for e ~ [0, 0.91]. 

The curves we construct are analytic in the parameter s in complex 
disks around e = 0; therefore the efficiency of our method is clearly related 
to the distribution of (complex) singularities in the parameter s. This is 
briefly discussed in Section 3.2 (see also ref. 3). Finally, in Section 3.3 we 
reproduce a few graphs indicating the self-similar nature of the invariant 
curves as E -~ sa (the self-similarity of critical invariant curves is one of the 
main themes in the renormalization approach~~ 
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2. C O N S T R U C T I O N  OF I N V A R I A N T  CURVES 

Consider maps as in (1) and fix coe(0, 2re) so that co/2g satisfies the 
diophantine condition 

co 1 

~-~ q -  P ~ C lql ~, Vp, q e Z ,  q # O  (4) 

for some positive constants C and 7. For  example, for co =coi as in (3) one 

has ~ = 1 and C1 - (3 + x/-5)/2, C2 - (5 + x/-5)/2, and C3 - 2 + xf2  (see 
Appendix A). 

A KAM curve with rotation number co is defined by the parametric 
equations 

{ ;  -x(O;  e)=-O + u(O; ~) l + u o r  
(5) 

where u(., e), y(. ,  e) are real-analytic 2re-periodic functions of 0 ~ T and are 
such that 

F~(x(O;e),y(O,e))=(x(O+co;e),y(O+co;e)),  VOeT (6) 

Since y '  = x ' - x  [see (1)], y is related to u in (5) simply by 

y(O; e) =- co + u(O; e) - u(O - co; e), VO ~ T (7) 

so that, eliminating the function y in (6), one obtains the following 
nonlinear, finite-difference equation for u: 

D2u-sf(Oq-u)=O ( l + u  07 ~0) (8) 

where D denotes the operator 

(here and below we drop the explicit dependence upon the parameter e 
when this does not lead to confusion). Conversely, if u is a real-analytic 
solution of (8), then defining x(O) as in the first line of (5) and y(O) as in 
(7), one can easily check that (x(O), y(O)) is a KAM curve satisfying (6). 
Thus the problem of the existence of KAM curves reduces to finding 
analytic solutions of (8). 

Notice that if u(O) is a solution of (8), then so is c + u(O + c) for any 
constant e; for definiteness we shall impose that u has vanishing mean 
value. 
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2.1. K A M  A l g o r i t h m  

As in ref. 6, to solve (8) efficiently we shall use a Newton iteration 
procedure equipped with a set of careful estimates. 

Let v (~ be an initial approximation, i.e., a real-analytic 2~-periodic 
function with vanishing average on T, with 1 + v(0 ~ r  and such that the 
error e (~ defined by the equation 

O2v (~ - ef(O + v (~ = e (~ (9) 

is small (see below for the precise meaning of "small"). 
Then a sequence of better and better approximations {v (j)} satisfying 

D 2 v ( J ) - e f ( O + v ( J ) ) = e  (j) , 1 + v(0J) ~ 0 (10) 

is constructed as follows. Consider the equation for w 

D[O+OTD(Of'w)] = -Oje~ f w dO=O (11) 

where ~b s -  1 + v(o s) and + / -  denotes translations by 0)/2: 

Notice that since 

f Dg=_f g+-g-=O (12) 

for any periodic function g(O), Eq. (11) makes sense only if its right-hand 
side has mean value 0. That this is the case is a consequence of (10): 
observing that, since ~ f = 0, f = 0e~ an integration by parts and (12) show 

f ~bjelJ) = - f (1 + v(j))[D2v (s)- gf(O + v(J))] dO 

=- f [v(oJ)D2v (j) + gOoj7(O + v(J))] dO 

f v(oJ)D2v (j) dO 

and observing that D satisfies the rule 

f giDg2 = - f  N2Dgl (13) 
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for any two functions gk on T, one concludes that 

f 
Oje j) = 0 (14) 

Now, if g is an analytic function with zero average, we shall denote by 
D l g  the unique analytic solution of Dh = g with zero average. Explicitly, 
in terms of the Fourier expansion of g: 

g -  Z 'd~ ei"~ 
n~Z,n~O 

D l g  = ~ 2i sin(ne)/2) 
n r  

ei,,o 
(15) 

Notice that the analyticity of D - l g  is a consequence of (4). After these 
observations it is clear that (11) has a unique (analytic) solution, w (j). Let 

15(j+ 1 )=  v(j) _~_ w(j) (16) 

Then it is not difficult to check that e (j+ 1) is actually equal to 

e(j+ 1) = e(oJ)Of lw(j) ~[ f (O + v(J)+ w (j)) - f ( O  + v (j)) 

fx(O + v (j)) w (j) ] (17) 

so that, as we shall see more precisely in a moment, the size of e (j+l) is 
quadratically  smaller than the size of e (j). In fact, differentiating (10) with 
respect to 0, one sees that 

f~ (  O + v (j)) = O/l(D2v(oJ)-e(o j)) 

so that from the definitions (16) and (17), from the fact that D2Oj= DZv(oJ) , 

and from (11) it follows that 

D2v(j+ i ) _  ~f(O + v ~i+ 1)) = 071 (~je(J) + OjD2wj - w j D % )  + e (j+ 1) 

1 wj 

= e( j+ 1) 

From (11), it follows that, roughly speaking, w (j) has the same "order 
of magnitude" as e (j), so that, if e (j) is "small" enough, v (j+l) in (16) will 
satisfy 1 + V(o j+ 1) ~ O. 
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To control such a construction, one needs to introduce suitable norms 
on analytic periodic functions. The choice of the norms depends on a finite 
set of auxiliary positive parameters. 

For a function g = g ( O , e )  real-analytic in (0, e) for O ESe = - 
{0EC:IIm(0)I~<{}, ~ > 0  and for e e d  ~ where g is the closure of a 
complex open neighborhood of the origin e = 0, we set 

[Igll~- = sup Ig(O, ~)1 
S~xd ~ 

(in the following the domain g is fixed once and for all and therefore we 
do not indicate it explicitly in the norm symbols). 

Remark  1. In ref. 6 we considered g = { e E C : l e l ~ p } ,  but, as 
one can easily check, all estimates in this section hold for more general 
domains g. 

Now assume that an initial approximation v (~ analytic in S~ x g, is 
given (in the next section we shall discuss the choice of v (~ and that 

II~o~lle ~ II(1 -~-1)(~ { < 00 

Fix N >  1 and let 60 ..... (5 N_ ~ be positive numbers such that 

~N~-- -~- - ( (~O "~- ' ' "  "1- ~ N  1) > 0  

For any j~>0 let M (jl, M(J), V (j), V~ j), E (j~ be upper bounds on, 
respectively, ~bj-1 + V(o j), ~ f l, v(j), V~oJ~, e(j). 

We can now describe the K A M  algorithm, i.e., a set of recursive rela- 
tions connecting M (j}, Y4 (j), V (j), V{ j), E (j) and M (j+~, M(J+'), V (j+~), 
V] j+~), E (j+~) for O <~j < ~ N -  1 and a condition on M (u), YI  (u}, V (u), V~ u), 
E (N), which, if satisfied, implies the existence of a KAM curve u(O; e) 
analytic in S~N/2 x g. 

For l = 0 ,  1 and 6 > 0  let st(a) be an upper bound on the convergent 
series 

oo [ n' "~2 _a.]1/2 s,(a) 

[ , ,~, ~sin(n~o/2))e 

[an explicit evaluation of st(b) is provided in Appendix B] 
O < < . j ~ N -  1, let 

f So(2~j)'~ aj = [m(J)_/f/I(J'so(6j)] 2 ~1 + (M(J)~(+~) 2 
So(aj) J l 

and, for 
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where 40 = 4 and (for j >~ 1 ) 4j = 4/-  1 - 6/ 1, 

and 

W(J) _ E(/)aj 

W~J) - E(/)aJ \ ~TJ~ 6 /  + ~ )  

Then one can take (for 0 ~< j ~< N -  1) 

J 
M(++ 1) ~ m(O) + y '  W]i) 

i=0 
/ ) 1  
Z W~ ') if 

i=0 

if 

J 
2 W?<l 

i -0  
J 
2 1 

i--O 

and 

where 

V(j+ 1) ~ v(O) ~_ 2 m(i) 
i=o 

J 
glj+ 1)~___ V~0).~_ 2 W~ i) 

i=o 

/ a  F (j+l) ~6-1 ) 
E (j+ ') = (E(J)) 2 a j \ ~ / j  2 + M (j) 

F(J+ ')= II~fxxll~j+l+ v<J+. 

Of course this construction makes sense provided ~r(J)< + ,  V1 ~< j ~< N. 
This is a smallness requirement on E <~ 

The fact that, with these definitions, M (j+l), A4 <g+l), V </+1/, V~/+1), 
and E (j+l) are upper bounds on IIC+II[r II~j+',llr llv<J+'lle++,, 
[Iv(J+0 ') r and [le(J+')ll ~j+i is a quite straightforward consequence of the 
definition of w (j), of (17), and of the following quantitative elementary 
lemma which is proved in ref. 6 (Lemmas 2 and 3 and Appendix A of 
ref. 6): 

L e m m a .  Let h=h(O,e)  be an analytic function on SCxd ~ with 
~T h(O, e) dO = 0. Then, for any 0 < 6 ~< 4, 

[ihollr ~ < i[hlle 6 1 

IIO~D-~hlFe ~ <~s,(26) Ilhllr 
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Finally, assuming (without loss of generality) that M (N), j~(N) 
~N 1 ~ 1, one can show (see Lemma 5 of ref. 6) that, taking in (4) r = 1 for 
simplicity, if 

K = 154 - 1013CS(M(N)) 2 (M(N)I~(N)) 21/2 ~ N-SF(N)E(N)2 ~<1 (18) 

then there exists a unique solution u of (8), real analytic in S~N/2 X g,  and 
such that 

Ilu - z)(N)][ ~N/2 ~ K~N/64, Iluo -- v(oN)ll <~ K/2~j(N) (19) 

Notice that the numbers 4, N, 61,-.., 5N are free parameters (with the 
constraint that IN > 0), which may (and have to) be "optimized." Such an 
optimization problem is a rather difficult one from an abstract point of 
view. However, in concrete cases, because of the fast (quadratic) speed of 
this algorithm, it is not so hard to make "good" choices. 

Remark 2. The KAM condition (18) is obviously related to the 
above iteration scheme: it is a condition that ensures the possibility of 
iterating the scheme infinitely many times (N ~< jT ~ )  so that 

/14j< ~ Vj, E(i) j~  o~ 0 (20) 

[where for j>~N one can take ~ j=  (~N/2)(1 + 1/20]. The main step in the 
derivation of the KAM condition consists in showing that if E (N) is small 
enough, then 

E (x+j) ~< (K~E(m) 2j (21) 

where K is basically the constant appearing in (18). 

R e m a r k  3. Of course one can take N =  0, i.e., ~)(N) _~_ I)(0) and apply 
the KAM condition directly to v (~ But the KAM condition is, as it stands, 
necessarily rather stringent and, as already pointed out elsewhere, (5-7) the 
main point of introducing the KAM algorithm is to mitigate the smallness 
requirements by following carefully the first few steps of the iteration 
scheme. 

2.2. Eps i lon-Expans ions  

Taking v (~ - 0  (see Remark 3 above) one has e(m(0, ~ ) -  -~f(O) and 
the KAM condition is certainly fulfilled by choosing g =  {e e C: [e[ ~<p} 
with p > 0 small enough. Then, the uniformity in g of all estimates implies 
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that the (unique) solution u(O, e) is real-analytic also in the parameter e. 
This means that u can be represented as a convergent power series in e: 

u(O, e)= ~ uz(O) e l (22) 
/ = 1  

R e m a r k  4. (i) Such a series is sometimes called a Lindstedt series. 

(ii) The normalization condition ST u dO = 0 implies that 

futdO =O, VI~>I (23) 

(iii) Inserting (22) into Eq. (8), expanding in e, and equating terms of 
equal power, one sees that ut is related to ul,..., ut_ 1 by a linear equation: 

l d ~t-1) f ( O +  ~ ekUk) (24) D2u'=qS'(u'"'"ul l ) = ( l -  1 ) ~  ~ ~=o k=l 

(iv) Integrating (24) over T shows that 

f ~ l  = 0, VI 

which is a compatibility condition among the u~. 
The rest of this section is devoted to finding explicit and compact 

recursive formulas for computing the ul from (24) (see also refs. 12, 17, and 
27) and in the next section we shall discuss how to construct initial 
approximations for the KAM algorithm considering suitable truncations of 
the Lindstedt series. Let 

f (O)-  ~" f~e in~ 
n4-O 

and for any n r 0 define the complex-analytic function a(~"l(O) as the coef- 
ficients of the e-expansion of e i"(~ + u(0)), i.e., 

ei"(~176 ~ a(k")(O) e k (25) 
k = 0  

Differentiating (25) with respect to e, one obtains 

/ = 1  k = O  k = l  
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or, equivalently, 

in luta~)_t g,k 1= ka~)gk-i  
k = l  l 1 k = l  

so that 

I a(o n) ~ e inO 

( . )_ in  
k~>l 

(26) 

Then, from Eq. (8) it follows that 

u , = D  -2 ~ f~al~l(O ) (27) 
nv~0 

completing the determination of ut in terms of u~_l,..., ul and of the 
auxiliary functions a~ "), O<~k<~l-1.  Notice that, because of (iv) of 
Remark 4, in deriving (27) we do not need to check directly that the series 
in (27) has vanishing average over T (so as to be able to apply the 
ope.rator D-2). Recall that the operator D -2 is diagonal in Fourier space, 
being just the multiplication of the mth Fourier coefficient by 

[ - 4  sin 2 = {2[-cos(m~)- 1]} i (28) 

Observe also that since u(O, e) is real-analytic both in e and 0, one has 
ut~/~ [-where, as usual, for an analytic function h(z), f~(z) denotes the 
analytic function h(5)]. Then it follows easily by induction on k that 

a~-')( O ) = d(k')( O ) = a~n)( O ) (29) 

so that 

u,= D 2 ( y ,  fnaln)l q_ fn{t~n)l) 
n>~l 

(30) 

A case of particular interest to us is when f is an odd trigonometric 
polynomial 

f (O)= ~ bjsin(pjO) (31) 
j = l  
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where pj, r e Z+ ,  0 ~ bj ~ R. In this case it is not difficult to see that also the 
ut are odd trigonometric polynomials 

rl 

ut(O) = Z c~ ~ sin(m) t)0) 
j = l  

1 " 
= Z b D 2(a(PJ) - c i r r i )  (32) 

2 / / ' j = 1  J ~, l - - 1  

for suitable numbers rl, m ) ~  Z+ ,  0 r cJ~  R. 
As a side remark we mention here that for (SM)  the number of 

Fourier coefficients c) l/ is given by l ( I+2)/2  if l is even and ( l+  1)2/2 if l 
is odd. 

2.3. In i t ia l  A p p r o x i m a t i o n  

As initial approximation v (~ of the KAM algorithm of Section 2.1 we 
would like to take the lo truncation of the Lindstedt series (22) with l0 as 
large as possible. Since we know that the Lindstedt series is convergent, we 
expect to be able to give accurate lower bounds on 

Pa = inf (lim ]u,(0)] 1/,) 1 (33) 
0 E T  

provided we can find an effective way of estimating the error term. Notice 
that pa ~< ea (defined in the introduction), the strict inequality being related 
to the form of the e-domain of analyticity. For  the standard map with ~o~ 
it is believed that Pa = ~a = eb .~3) 

To carry out this strategy, it is natural to turn to computers: one 
needs to write a (straightforward) program on the basis of formulas 
(26)-(32), which computes the Taylor Fourier coefficients of (a polynomial 
truncation of) the function u in (22). However, in doing so one introduces 
numerical errors. In fact, the computer will produce some rational 
approximations (depending on the machine, on the way the program is 
written, etc.) of the true Taylor Fourier coefficients of u. 

Nevertheless, as initial approximation we shall define 

lo 10 

v(~ Z f i t ( 0 ) d -  Z X fi(~ ')et"~ (34) 
l = l  t 1 nv~0 

where the fil are the result of a (given) automatic computation based on the 
formulas (26)-(32). This is the main difference from ref. 6, where we defined 
v ( ~ 1 7 6  and then used the so-called interval arithmetic to keep 
track of the numerical errors. Here, the interval arithmetic is not used at 
this stage, but will come in estimating the error term associated to (34). 
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The interval arithmetic consists, in short, in the following. The 
numbers representable on a computer are, basically, numbers with a finite 
binary expansion and, depending on the machine one is using, it is possible 
to give upper and lower bounds, in terms of representable numbers, of the 
result of elementary operations between representable numbers. Therefore, 
trapping real numbers with intervals whose ends are representable num- 
bers, it is possible to trap the result of an elementary operation in terms of 
lower and upper bounds on the result of the operation between the ends of 
the intervals (see ref. 19 and Appendix C for more details). 

The main advantage in defining v (~ as in (34) rather than as the 
theoretical lo truncation of (22) is that we do not need to use interval 
arithmetic at this stage (as we did in ref. 6) and therefore we do not use 
interval arithmetic on the small divisors (28) appearing in (27). Of course, 
we shall pay for it later when we can no longer use the fact that the lo trun- 
cation of (22) solves exactly Eq. (8) up to order l0 in e. Instead we will have 
to rigorously control the job of our machines and check (with interval 
arithmetic) how far from the theoretical guess is the polynomial (34) 
evaluated by the computer. Notice, however, that in this "validation stage" 
small divisors do not appear directly. This fact makes quite a lot of 
difference. 

2.4. B o u n d  on  t h e  Error Term 

In the following we shall take 

# - B p -  {~C:l~l~<p} 

for a suitable p > 0 and v (~ given by (34). Recall that the input data of the 
KAM algorithm are the numbers (~(o), M(O), v(O), v~O), E(O)). To estimate 
ll0~v(~ e for s = 0 ,  1, we use 

l0 

I1~;v(~162 ~ P' Z Inl s I~')1 cosh(Inl 3 ) -  V~ ~ 
l = 1  n ~ O  

(V(o~ V (~ and then we estimate M (~ and ~(o) by, respectively, 1 + V~ ~ 
and (1-V~~ -1, provided, of course, that V~~ (otherwise we set 
~(o) _ oo ). 

It remains to estimate the error term. By definition of e (~ 

,o ( , o  ) 
e(~ = Z FD% + ~f 0 + F, #D2~ 

l = l  / = 1  

lO 

= Z e'Deu, + Z f,, ~ ehd~"'l(0) 
l = 1  n ~ 0  h - - 1  

822/65/3-4-14 
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where the f~ are the Fourier coefficients of f and d(fl)(O) is defined by 
exp[in(O + v(~ = ~h>~o d(h")(O) sh. Therefore 

l 1 n r  n r  l=hj 

- Fto + R,o 

Notice that i f f  is a trigonometric polynomial, so are the d~ ~) and the t~, 
(even though the size grows when l increases (see the remark at the end of 
Section 2.2); see below for the explicit formulas, which are similar to 
(26)-(32)). Thus, the estimate of F,0 reduces to a finite computation which 
will be performed on a computer using the interval arithmetic. The bound 
of Rl0 is based on the following result: 

[_errllTla. 
al")({) ~>0 for O<~l<~lo, so that 

a(o ")= Inl 
a~")~ > Inl sup 1~Tz(O)lr 

]Im(O)l ~< 

and define for l>~O, 8 ~ / s o  that for every s 

Then 

and, Vp > 0, 

Let v(~ and dl")(O) be as above. Given 3 > 0 ,  define 

1 <<.1<~l o 
(35) 

Id~"/(0)l~ - sup Id~"~(0)[ ~<6~ n~ (37) 
[Im(0)l ~ 

l =,o ~,p l=lo 

<~ 6~n)p '=exp  a~")P ' - 2 6~")P ' (38) 
l='o \l=0 /=0 

Proof. With arguments similar to those used to derive (26), one sees 
that d~n)(O) and 61 n) satisfy the following recursion relations: 

~ e i"~ l = 0 
dl~)(O) 

t /  m~/]0)huh(O)d'n-)h' l ~  [ 
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6~ n) - I enr 

1 mi~,lO) h,q(n)eg(n) 

7 h=l  ' ~ h  V l - - h ,  

Let us prove (37) by induction on l. For l =  0 

Id~0n)(0)l r ~< elnlr 

Now, fixing l ~> 1 and assuming for 0 ~< h ~< l -  1 

/ = 0  

1~>1 

by (35) and the inductive hypotheses one has 

1 min(l'/0) 

h=l  
1 min(l./0) 

~ h  U k - - h  4 7  h=l 

h tnl lu~(O)l~ ldl~h(O)[r 

The estimate (38) follows now from (37) and (36). | 

2.5.  R e s u l t s  

We collect in this section the results of the application of the methods 
presented above. The rotation numbers col, (o2, (o3 satisfy the diophantine 
condition (4) with r - -  1 and C respectively equal to 

C1 ~ 3 - ~ - ~  C2 ~ 5 -1- ~ C3 ~ 2 _t_ ~ 
2 ' 2 ' 

(see Appendix A for the proof). Both e)l and co 2 are irrational noble 
numbers, namely their continued fraction expansion is definitely one: 
denoting by 

[ao; al,  a2,...] = a o +  1 
al-t- - -  

a2 + �9 .. 

one has 

(.O 1 = ['0; 1, 1, 1,...], ~o2 = [-0; 1, 2, 1, 1, 1,...], (D 3 = [0; 1, 2, 2, 2,...] 
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The choice of these rotation numbers is related to the fact that such 
numbers are badly approximated by rational numbers, so that the small 
divisors appearing in the Lindstedt series (and therefore in v I~ are not 
"too small." It has also been conjectured by MacKay (21) and Percival (27) 
that for a certain class of one-parameter mappings the curves with noble 
rotation numbers are locally the most robust. In particular, the curve with 
rotation number equal to the golden ratio col is the favorite candidate for 
survival, since col is the irrational number worst approximated by rationals. 
Numerical experiments supporting this statement were performed by 
Greene (13) for the map (SM). However, the golden mean curve is not 
always the last one to disappear. A numerical computation of the 
breakdown threshold based on Greene's method (see Section 3.1) indicates 
that for the map (SM)' actually cg',(c%) might survive longer than (g',(COl) 
(see Table II). 

Table I provides the results of the application of the KAM algorithm. 
The computations were done on the VAX 8250 of the University of Rome 
"Tor Vergata" and the program was run at most in 15 h of CPU time. 

For a given rotation number co, ~r = er(Co) is the maximal value for 
which our KAM algorithm ensures the existence of a solution u(O; e) of (8) 
and hence of the invariant curve cg~(co). Maximal here means that Sr(O)) is 
experimentally chosen to be the maximal p for which our KAM algorithm 
converges [i.e., the KAM condition (18) is satisfied after N steps] as 4o 
and (the first few 6j) are varied. The integer l o denotes the order of the 
initial approximation 

10 
V(10)(0;8); ~ ~l(0 )el 

l = 1  

N denotes the number of steps in the KAM algorithm (see Section 2.1); 
finally, ~r denotes the width of the analyticity domain of u(O; ~). Notice that 
if ~o is one of the inputs of the KAM algorithm, and the algorithm 
converges at the Nth step, ~r = (~0/4)(1 + 1/UV). 

Table  I. Rigorous L o w e r  Est imates for  the  Existence of  K A M  Curves 

C u r v e  l o ~r N ~r 

cg~(091) 190 0.838 6 5.07 x 10 -3  

cg~(~2) 190 0.77 5 5.15 x 10 -3  

c~(o)3) 160 0.76 5 5.15 x 10 3 

('~'~((D1) 60 0.4 7 5.03 x 10 -3  
~'~(o92) 60 0.39 7 5.03 x 10 -3  
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3. EXPERIMENTAL METHODS 

In this section we briefly discuss some numerical experiments for 
parameter values near to critical. The discussion is sketchy and aims at 
pointing out qualitative phenomena without attempting a systematic 
quantitative analysis, which, we believe, deserves further investigation. 

3.1. Greene's Method 

There exist various numerical methods designed to estimate the critical 
value at which a given KAM torus disappears. An excellent one is a 
method worked out by J. Greene. He conjectures that the breakdown of an 
invariant curve cg~(co) is related to a sudden change from (linear) stability 
to instability of the periodic orbits "approaching" cg~(co). More precisely, he 
considers a family of periodic orbits with period qj and rotation number 
p / q j  given by the rational approximants to the irrational rotation number 
co (see Appendix A) and, as j increases, the trace of the associated Floquet 
matrices is studied (see ref. 26 for another interesting method for the 
numerical evaluation of ~b)- 

We summarize in Table II the results for the curves considered in 
Sec, tion 2, denoting by e~ the value obtained applying Greene's method. 

3.2. z-Expansion Criterion 

Following ref. 6, we present a (rather crude) numerical experiment 
based on the direct construction of the KAM curve. 

We saw in Section 2 that a KAM curve can be parametrized by 

x = 0 + u(O; e) 

y = co + u(O; ~) - u(O - co; ~), 0 ~ T 

Table II. Experimental Evaluation of the Critical 
Parameter  at Which KAM Curves Disappear 

Curve eG 

c~E(~ol) 0.9716 
cg~ (~2) 0.90444).9045 
cg~ (~o3) 0.908~).909 
(~ '~ ( ok I ) 0.6013~).6014 
c~',(~o2) 0.7212~).7214 
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Table III. 

Celletti  and Chierchia 

Experimental  Evaluation of the G-Radius 
of Convergence of K A M  Curves 

Curve e. 

c~(col) 0.973 
(~e (o)2) 0.905~).906 
cd, (e)3) 0.912~).913 
(~'z (0) 1 ) 0.52 
cg'~(o2) 0.5 

and that an explicit polynomial approximation 

/o 
~U~ e ) - -  2 ~,(0) g' 

l = 1  

can be constructed. If lo is large enough and if le] < Pa [see (33)], then for 
any 0 the point (Xo, Yo) = (0 + u~0(0; e), o) + u~0(0; e) - uto(O - co; e)) lies very 
close to the true KAM curve. So that if we take (xo, Yo) as initial point and 
if we look at the iterates F'~(Xo, Yo) we expect to see a regular graph in the 
(x, y )p lane  which should be a good approximation to the KAM curve. 
When e becomes equal to p . ,  the series • ul(O) d will no longer converge 

. . . .  I . . . .  I . . . .  I ' 

4,0 

3 8  

3.6 ' 

3.4 

. . . .  [ . . . .  I . . . .  I , 
2 4 6 

Fig. 1. S tandard  map,  e = 0.97135, 106 iterations of 

2OO 

(Xo, yo)--=(O,(Ol-I - '~. b!l((D,e) J), e) l - -  (Xf'5-- 1)7"C 
l - -1  

The initial point  (Xo, Yo) is obta ined through a 200-truncation of t -power  series of the 
parametr ic  representat ion of the invariant  curve (see Section 2 for more  details). 
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(at least for some values of 0) and we expect that the iterates F;'(Xo, Yo) 
will eventually wander in phase space, covering in a "chaotic" way open 
regions. The number of iterations we monitored (for the models at hand) 
was of the order of 106 and observations were made at various scales. Long 
chains of elliptic islands were considered "regular behavior," while 
"chaotic" regime was assigned to orbits which after 104-106 iterations 
"covered" open regions. Table III shows the application of this method to 
the maps considered in Section 2: e, denotes the numerical transition value 
at which the iterates F~(xo, Yo) do not seem to lie on a graph. 

This technique, besides visualizing the graph of the invariant curve, 
provides a rough estimate of Pa. In the case of the standard map (SM), 
Pa~--E~ (compare Tables II and III) which in particular indicates that 
ea ~ e b. A different phenomenon shows up when one compares the results 
of the two methods in the case of the map (SM)': for both col and ~o2 there 
is a relatively large discrepancy between the e-expansion and Greene 
methods. A plausible explanation relies on the remark that the e-expansion 
criterion provides an estimate on the minimal radius of analyticity in the 
complex e-plane, while Greene's value relates to the real breakdown 
threshold. 

A numerical study of this phenomenon indicates that for the standard 
map the domain of e-analyticity of Z ut(O)e t (for typical values of 0) is a 
circle with radius equal to Greene's value, (3) while the same experiment for 
the two-frequency map (z) suggests that the domain of analyticity might be 
at least in "first approximation" an ellipse with the minor semiaxis 
approximately equal to the value obtained by the e-expansion criterion and 
the major semiaxis about equal to Greene's value. 

4.30 

4.29 

4.28 

427  

426  

4 25 

I . . . .  I . . . .  I . . . .  I 

I . . . .  I . . . .  I . . . .  I 
4.5 5 5 5 6 

Fig. 2. Magnification of Fig. l. 

i 
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. . . .  I . . . .  I . . . .  I 

. . . .  I . . . .  I . . . .  I 
5.2 5.3 5.4 

Fig. 3. Magnification of Fig. 1. 

3 . 3 .  S e l f - S i m i l a r i t y  

For  the standard map, as already mentioned, it is believed that 
pa=ea=eb;  if this is so, (x0, Yo) computed as described in the previous 
section (with l0 = 190) yields a very good approximation of a point on 
the invariant curve for e~<pa. By iterating 106 times such a point for 
e = 0.97135 we obtain Fig. 1. Critical curves have a very special role in the 
renormalization approach (1~176 and one of their main properties should be 
the "self-similar" structure. Magnifying the interval [4.5, 6] of the x axis 
containing the two maxima of the curve, we obtain the second picture 
(Fig. 2). Successive magnifications around the local maxima (respectively, 
minima) suggest that at each step the graph is an upsetting of the previous 
picture on a different scale (Figs. 3-5). After a few magnifications this 

4,25325 

4.2S320 

4.25315 

4.25310 

- / 
\ / 

I 
5.24 

L# 
5.26 5.28 

Fig. 4. Magnification of Fig. 1. 
5.3 
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4.z531125 . . . . .  I . . . .  I . . . .  I . . . .  I . . . .  ] . . . . .  

4,2531100 

4,2531075 

4.2531050 

4.2531025 

4.2531000 . . . . .  [ . . . .  I . . . .  I . . . .  I . . . .  I . . . .  
5264 5.266 5.268 5.27 5.272 

Fig. 5. Magnification of Fig. 1. 

phenomenon stops; the number of self-similar rescalings depends on how 
close is ~ to the transition value (see ref. 21 and references therein for more 
on this theme). 

A P P E N D I X  A. C O M P U T A T I O N  OF T H E  D I O P H A N T I N E  
C O N S T A N T S  

Here we compute the d i o p h a n t i n e  c o n s t a n t s  for 

~ol _ x / -5 -  1 x/-5 + 5 , f 2  
2 ' co2 -= 1 ~ '  co3 = 2 

More precisely, we shall prove that (for i = 1, 2, 3) 

with 

c o i - -  p > / C i q  2 ' 1  Vp ,  q e Z ,  q r  (39) 

C1 -- 3+x/52 ' C2-- 2 , C3 =-- 2 q- ~ j 2  (40) 

Let us recall a few standard facts from the theory of continued fractions. (16) 
Let co be a positive irrational number and denote by [ao; a l ,  a2,...], ak e N 
its continued fraction expansion, i.e., 

1 
c o = a o +  

1 a~-+ 
a2+ "-- 
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Denote  also, as usual, 

P* ~- [ao;  as,..., ak] ,  
qt 

rk =- [at; ak+ 1,...] 

Then,  the following s tandard  relat ions hold(16): 

p t = - P t _ l a t + P k _ 2 ,  qk=qk--lak+qk--2 

for any  k ~> t, having set p _ ~ =- 1, q_ L -= 0, Po =- ao, qo ~ l; also, 

Pk--lqk--Z--Pk--2qk-1 = ( - - 1 )  t, Vk~> 1; P2k~ .~ 09 r P2k+--21 (41) 
q2k q2lc + 1 

1 I P t  1 rt Pk - -  1 ~- Pk - 2 
qt(qk+qk+l)  < [co--~kk < - - ;  co=- (42) qkqk + l rkqk-- 1 + qk-2 

I . e m m a  A1.  Let qs: [1, oo) ~ [ 1, oo) be a cont inuous  nondecreasing 
function. Then  f rom 

l 
[c~qzr-- Pkl ~ ~ ,  Vk~>O 

it follows that  

1 
J~oq - Pl >~ )tC"q---"7' Vq r 0 

ProoL If p/q = p~/qt for some k, there is nothing to prove.  Assume 
therefore that  P/q#Pk /q t ,  Vk>~0. Then  three eases are possible: 
(i) p/q<po/qo~ao,  (ii) P/q>Pl /q l ,  or (iii) p / q e l k ,  where Ig---- 
(Pk ~ l/q~ + 1, Pk-  1/qt- 1) for  k odd and It  - (p~_ 1/qt-1, Pk + ~/qk + ~) for k 
even. 

In case {i): 

I P co Po Icoq-P[>t co- > lco-ao l=  -~oo > 

In case (ii): 

1 1 ! 

q~( qo ) - ~  ~ qb( q ) 

P co q l 1 
- > - - ~  qql ql a~ 
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On the other hand, Ic~- aol ~< l /a1;  therefore 

1 1 
I~oq- Pl > I~o - Pol = ICOqo - P o l /> - -  /> - -  

aS(qo) q~(q) 

In case (iii), by (41), 

1 p pk  i P k + l  pk  1 < pk  p k _  I 
qqk--1 q~ q~+l  qk 1 qk qk 

1 
= ~ q > q k  

qkqk  1 

Again by (41), 

(.o p > p k  + p 1 ! > I  1 ~ [ ~ ~  
qk +, qq~ + 1 qk + 1 

but, by (42), I ~ q k - - P k l  <~ 1 /qk+l  and since q >  qk, Lemma 1 follows. 

L e m m a  A2. For a l lk~>0  

Pk 1 
~ - - - -  ~ 2 q~ akqk  

with a k ~ rk + 1 + qk ,/q~. 

Proo f .  By (42) and (41) 

CO _ p k  = r k + l P k + P k - - 1  

qk rk + 1 qk q- qk -- 1 

1 1 

1 

- - q k ( r k + l q k + q k  1) 

q2k(rk+,  + q k - 1 / q k )  q k a k  

By Lemma 1 it is enough to check (39) for (p, q ) =  (Pk, qk) and by 
Lemma 2 we can take C =  supg>~o ak. Since, as one easily checks, 

co~ = [0; 1, 1, 1,...] - [0; 1~] ,  0) 2 = [0; 1, 2, 1~176 (2) 3 = [-0; 1, 2 ~ ] 

one finds (the superscripts refers to the index of the ~o's) 

~(~) _ ~/5-I- 1 
" k + l  2 (Vk i> O) 

r~2) 5 - - x / 5  r~22)_=~/~+3, r~k2,_X/~+1 
2 ' 2 ' 2 

r]3) = x/2, r23) = 1 + x/-2 (Vk >~ 2) 

(Vk >~ 3) 
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From 

q(~-)l q{o i' q~i) 
q~oO - 0 ,  ~o,) = 1, "/k+ l'q(i--7-- < 1 ( i = 1, 2, 3, V k >1 1) 

(39) and (40) follow. Notice that one might get better estimates for 
k/> ko > 0 using the general identity 

qk _Eak;a l r  ..... al-], Vk~>l qk-- 1 

A P P E N D I X  B 

In this section we show how to obtain an upper bound on the quantity 

0.1(~) ~_~_ [n~l ( ///1 ~2 an] 1/2 
= \sin(nco/2)J e -  ] , 1=0,1  (43) 

where ~o �9 (0, 2g) satisfies (4) with r = 1. The idea is to split the sum into 
a finite part, which can be "explicitly" evaluated, plus a remainder for 
which analytical estimates can be proved. 

L e m m a  B1. Let trt(6) be as in (43); then for I=0 ,  1, trz(3) can be 
estimated by 

IN--1 ( tll ~2 --fin _[_ sSN)] 1/2, 
sl(6)--  ~=~ \ s in(mo/2)J  e N ~ N  

where, denoting c~ - 3(1 + co), 

rc2C 2 
S{~ --- 4 (1 - e -a) ea/2e ~(N- 1) ~3 [2 + (2N+ 1 ) ~ + N2~ 2 ] 

/~.2C2 
s~N)~ 4 (1 - e - a )  ea/2e -~(N 1)1  [ 2 4 + ( 2 4 N + 3 6 ) ~  ~5 

+ ( 1 2 N 2 + 2 4 N + 1 4 ) ~ 2 + ( 4 N 3 + 6 N 2 + 4 N + l ) c t 3 + N 4 ~  4] (44) 

Proof. Let 

l 
b n -  ~ sin2(kco/2 ) for n ~> N and b N - 1  • 0 N~<k<~n 
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Then, since b n - b n  1 = 1/sin2(nco/2), it follows that 

( /2l ~2 
\sin(~-/2)je a"= ~ /221e-6n(bn--bn l) 

n=N n=N 

= ~ n2le a"b,- ~ (n+ 1)2t e-a"e-ab~ 
n=N n=N 

~ ( 1 - - e  -a) ~ n2te-a"b, 
n=N 

~2C2 
/22/+ 2 e 6n 

~<(1 - e-a)  - ] ~  n=N 

where in the last inequality we used Riissmann's estimate (28) 

Ib,,I = 
1 1 

Y', sin2(k~/2) <~ ~ 4minz~zl(Co/2rc)k_l t N ~ k ~ n  l<.k<~n 

Tc2C 2 
~ < - - ~ n  a 

Now using that for any k >/0 

dk e-aN 
"=N nke an = (-- 1)k d6k 1 _ e - a  

and the estimate 

e a 1 

1 - e  a < ~  ' 
V6>0 

one has 

/,/1' ~2 
\ s i n ( ~ / 2 ) ]  e-a" < SSN) 

n=N 

with S~ N) as in (44). | 

A P P E N D I X  C 

Let us denote by ~ a certain set of representable numbers on a 
given computer (for example, N may be the set of " R E A L ,  8" numbers 
represented in G-floating on a VAX 8250(29)). The result of an elementary 
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operation (i.e., addition, subtraction, multiplication, or division) between 
two numbers in N may not be in N and, therefore, the result given by the 
computer  is in such a case approximated. However, it is usually possible 
(as in the case of the VAX) to give lower and upper bounds in terms of 
representable numbers of the actual result. In other words, it is possible to 
trap the result of an elementary operation between x, y E ~ in an interval 
with endpoints still in N (the size of such an interval will be about  equal 
to the precision one is working with). 

Interval arithmetic consists in substituting real numbers with (possibly 
closed) intervals with endpoints in N and in substituting elementary 
algebra on real numbers with (straightforward) algebra on intervals. Let us 
try to make this clear with an example. Imagine we want to compute with 
interval arithmetic the number  -1/z~ 2. Let 1 e [1_ ,  1+],  g~  [~ , ~ + ]  
with 1+, ~_+ e ~ .  Notice that necessarily ~ < T r < ~ + ,  but that it is 
(usually) true that l e N ,  so that one will take 1 = 1+ = 1. Now, if 
x, y s N and ( . ,  �9 ) denotes one of the elementary operations, we denote by 
(x ,  y ) + ,  {x, y ) _  the best, respectively, upper and lower bounds in N on 
the number  (x ,  y ) :  (x ,  y)_+ ~ and (x ,  y ) +  = m i n { r ~ :  r~> (x ,  y ) } ,  
( x , y ) _  = m a x { r  e N :  r~< (x ,  y )  }. Then '/c2 E [-(7g �9 7~ ) , (TO+ * ~ + ) + ]  
[a , a + ] ,  1 / ~ 2 E [ ( l _ / a + ) _ ,  ( l + / a ) + ] - [ b _ , b + ] ,  and finally, since 
the change of sign is (usually) an exact operation among representable 
numbers (i.e., if t e N ,  then - r e N ) ,  1/:g2~ I -b+ ,  -b_] .  

An automatizat ion of this type of procedure allows one to keep track 
of errors in long computations. 
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